KOMMUTATIVE ALGEBRA - BLATT 7

1. Gröbnerbasen

Aufgabe 1. Implementieren Sie in normalform.m2 eine Funktion spolynom, die für Polynome $f, g \in \mathbb{Q}[x_1, \ldots, x_n]$ das S-Polynom spoly(f, g) berechnet.

Aufgabe 2. Vervollständigen Sie die Implementierung des Buchberger-Algorithmus in buchberger.m2.

Zusatzaufgabe: Überlegen Sie, wie die Laufzeit des Algorithmus verbessert werden kann.

Aufgabe 3. Implementieren Sie in membership.m2 mithilfe von buchberger.m2 und normalform.m2 eine Funktion membership, die für $\{f_1,\ldots,f_r\}\subseteq \mathbb{Q}[x_1,\ldots,x_n]$ und $f\in \mathbb{Q}[x_1,\ldots,x_n]$ überprüft, ob f ein Element von $\langle f_1,\ldots,f_r\rangle$ ist.

Aufgabe 4. Vervollständigen Sie die Funktion dimension, die zu einem gegebenen Ideal $I \subsetneq \mathbb{k}[x_1, \dots, x_n]$ die Dimension von I berechnet. Nutzen Sie dazu aus, dass

• $\dim(I) = \dim(\operatorname{in}_{\leq_{\operatorname{GRevLex}}}(I)).$

Überlegen Sie dann, wie man die Dimension eines Monomideals $\langle m_1, \ldots, m_r \rangle \subset \mathbb{k}[x_1, \ldots, x_n]$ algorithmisch berechnen kann.

2. NÜTZLICHE BEFEHLE

- leadMonomial
- leadTerm
- gcd
- terme
- monome
- >
- subsets
- gens