Efficiently detecting toric ideals joint work with Julian Vill arXiv:2408.14323

> Thomas Kahle OvGU Magdeburg

September 26, 2024

Question

Definition

An prime ideal $I \subseteq k[x_1, \ldots, x_n]$ is toric if it can be generated by pure differences:

$$I = \langle x^u - x^v \mid u, v \in \mathbb{N}^n \rangle.$$

Question

Given a prime ideal $I \subseteq k[x_1, \ldots, x_n]$, does there exist a linear coordinate change $g \in GL_n(k)$ so that g.I is toric?

- Is this decidable on a Turing machine?
- Can such a g be computed? Efficiently?

Why?

- Sparse equations are better than dense equations.
 - Is I generated by binomials?
 - Does I contain a binomial?
 - Is I generated by binomials after linear coordinate change?
 - Does I contain a binomial after a linear coordinate change?
 - Does I contain a polynomial with at most t terms?

Why?

- Sparse equations are better than dense equations.
 - Is I generated by binomials?
 - Does I contain a binomial?
 - Is I generated by binomials after linear coordinate change?
 - Does I contain a binomial after a linear coordinate change?
 - Does I contain a polynomial with at most t terms?
- Toric ideals are nice
 - Make interesting varieties but with combinatorial theory.
 - Gröbner bases of toric ideals are polyhedral objects.
 - Toric varieties appear in applications, e.g. discrete exponential families.

Why?

- Sparse equations are better than dense equations.
 - Is I generated by binomials?
 - Does I contain a binomial?
 - Is I generated by binomials after linear coordinate change?
 - Does I contain a binomial after a linear coordinate change?
 - Does I contain a polynomial with at most t terms?
- Toric ideals are nice
 - Make interesting varieties but with combinatorial theory.
 - Gröbner bases of toric ideals are polyhedral objects.
 - Toric varieties appear in applications, e.g. discrete exponential families.
- Any new tool allows new larger scale experiments.

Examples of hidden toric structure

- Group based models in phylogenetics become toric in Fourier coordinates.
- Cumulant coordinates in statistics can dramatically shorten polynomials. E.g. the tangential variety to Segre becomes toric (non-linear, though).
- Chemical reaction network theory: toric steady states.

math**overflow**

Home	Proving that a variety is not (isomorphic to) a toric variety Ask Question						
Questions	Asked 12 years, 2 months ago Modified 6 years, 9 months ago Viewed 853 times						
Tags Saves	Is there an algorithmic (or other) way to prove that a (projective) variety is not isomorphic to a toric variety?	Featured on Meta					
Users	11 I'd be happy with an algebraic answer (for affine or projective varieties), using the fact that toric ideals are binomial prime ideals. There ne could use that the coordinate rings are	Upcoming sign-up experiments related to tags					
Unanswered	 chio face and a binometric prime for the sensitive of the sen	Hot Meta Posts					
oking for <u>your Teams?</u>	 This question resulted from an Example that I discussed with Mateusz Michalek. The example is: let V be the 2risk iclosure of the image of the parameterization: 	14 Why is the site being flooded with junk right now? What is being done about it					
	$(p_1a_1a_2a_3 + p_2b_1b_2b_3)$	Related					
	$\begin{pmatrix} p_1a_1a_2a_3 + p_2b_1b_2b_3\\ p_1a_1a_2b_3 + p_2b_1b_2a_3\\ p_1a_1b_2a_3 + p_2b_1a_2b_3 \end{pmatrix}$	26 Is there always a toric isomorphism between isomorphic toric varieties?					
	$(p_1, p_2, q_1, q_2, q_3, h_1, h_2, h_3) \rightarrow p_1 a_1 b_2 b_3 + p_2 b_1 a_2 a_3$	7 nef Cone of a Toric Variety					
	$(p_1, p_2, a_1, a_2, a_3, b_1, b_2, b_3) \rightarrow \begin{cases} p_1 a_1 b_2 b_3 + p_2 b_1 a_2 a_3 \\ p_1 b_1 a_2 a_3 + p_2 a_1 b_2 b_3 \\ p_1 b_1 a_2 b_3 + p_2 a_1 b_2 a_3 \end{cases}$	2 When is the blow-up of a closed sub- variety of a toric variety a toric variety?					
	$ \begin{pmatrix} p_1b_1b_2a_3 + p_2a_1a_2b_3 \\ p_1b_1b_2b_3 + p_2a_1a_2a_3 \end{pmatrix} $	6 Isomorphic equivariant sheaves are equivariantly isomorphic on a toric variety					
	Implicitization using Macaulay2 is quick and yields a complete intersection:	1 Is this toric variety always smooth?					
	$\langle et-ry-qu+wo,wt-qy-ru+eo,we-qr-yu+to\rangle\subset k[q,w,e,r,t,y,u,o]$	Question feed					

How to prove that V is not toric?

toric-varieties ac.commutative-algebra

Share Cite Edit Close Delete Flag

Are all discrete Bayesian networks toric after linear coordinate changes?

Lisa Nicklasson's example

```
Consider the prime ideal generated by
```

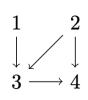
```
 \begin{array}{ll} p_{1111} + p_{1112} + p_{1121} + p_{1122} & p_{1211} + p_{1212} + p_{1221} + p_{1222} \\ p_{2111} + p_{2112} + p_{2121} + p_{2122} & p_{2211} + p_{2212} + p_{2221} + p_{2222} \end{array}
```

and

		p_{2111}		p_{1121}			p_{1211}			ł	p_{2221}	
$ p_{11} $	112	p_{2112}	,	p_{1122}	p_{2122}	,	p_{1212}	p_{2212}	,	p_{2212}	p_{2222}	•

Theorem

No linear coordinate change makes this toric.



When is a Polynomial Ideal Binomial After an Ambient Automorphism?

Lukas Katthän¹ · Mateusz Michałek^{2,3} · Ezra Miller⁴

- The locus in $GL_n(k)$ which makes an ideal binomial is constructible.
- Can in principle be computed using comprehensive Gröbner bases.
- Solves a much more general problem.
- Not efficient enough for above examples.

Goal: Make it efficient in more specific situation.

Approach

A variety is toric if it is the closure of a torus orbit of one point. Find the maximal torus acting on V(I) in $GL_n!$

Here *torus* always means algebraic torus, i.e. a group (of matrices) that is isomorphic to $(\mathbb{C}^*)^n$, e.g. a group of diagonal matrices.

Example

- Let $I=\left\langle xz-y^{2}\right\rangle \in\mathbb{C}[x,y,z].$ Its variety is toric.
- A 2d-algebraic torus acting on it is generated by the matrices

$$\begin{pmatrix} a & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a^{-1} \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & b^2 \end{pmatrix}, \qquad a, b \in \mathbb{C}^*$$

- $V(xz y^2)$ is the closure of the orbit of (1, 1, 1) under the action of $(\mathbb{C}^*)^2$.
- The torus is a (diagonal) subgroup of ${\rm GL}_3(\mathbb{C})$ and thus easy to find.
- Necessarily this torus must be a subgroup of the subgroup fixing the ideal I!
- Also $V((x+y)z y^2)$ is a toric variety.
- There is some 2d (non-diagonal) algebraic torus in the group fixing this ideal.
- Find it! Diagonalize it!

Setup

- Fix $k = \mathbb{C}$, but in reality, start with \mathbb{Q} and algebraically extend as needed.
- $I \subseteq \mathbb{C}[x_1, \dots, x_n]$ is assumed prime and homogeneous.
- $\bullet\,$ The Lie group ${\rm GL}_n(\mathbb{C})$ acts on the polynomial ring via

$$g.f(x) = f \circ g^{-1}(x) = f(g^{-1} \cdot x)$$

• Consider the stabilizer of *I*:

$$G_I := \{g \in \mathrm{GL}_n(\mathbb{C}) \mid g.I \subseteq I\}.$$

This is itself a Lie group (like any closed subgroup of $GL_n(\mathbb{C})$).

• Lie algebra \mathfrak{g}_I of G_I can be computed from I using linear algebra.

Torus actions on varieties

Symmetry Lie algebras (Maraj and Pal, arXiv:2309.10741)

- The Lie algebra g_I can be computed as the stabilizer of an action *:
 q * c = 0 for c ∈ C.
 - $-g * x_i = g \cdot x_i$
 - g * (pq) = (g * p)q + p(g * q) for all $p, q \in \mathbb{C}[x_1, \dots, x_n]$
- Then $\mathfrak{g}_I = \{g \in \mathbb{C}^{n \times n} \mid g * I \subseteq I\}$
- Question 34: Can symmetry Lie algebras detect if I is toric?

Criterion for negative answer [MP23]

If $\dim(G_I) = \dim(\mathfrak{g}_I) < \dim(I)$ then V(I) is not toric.

This solves Lisa Nicklasson's example again because $\dim(\mathfrak{g}_I) = 8$ (but 5 equations in 16 variables).

Our plan for Question 34

- If I is prime and I' = g.I is binomial, there is a maximal torus T' in G_I such that the orbit of a generic point in V(I) is dense in V(I).
- Can compute *some* maximal torus T in G_I (or \mathfrak{g}_I) using Lie theory and Cartan algebras.
- All maximal tori are conjugate, so T and T' are. Thus the orbit of a generic point of V(I) under T is also dense.
- To find the coordinate transform, we diagonalize the torus. Then it acts as

$$((t_1,\ldots,t_d),(x_1,\ldots,x_n))\mapsto (t^{a_1}x_1,\ldots,t^{a_n}x_n).$$

for some $a_1, \ldots, a_n \in \mathbb{Z}^d$.

Computing a maximal torus

Some Lie theory

- We compute a nilpotent and self-normalizing (Cartan) subalgebra c.
- Its Lie group is the centralizer of a maximal torus and of the form $T \times C_n$ with T a maximal torus and C_n unipotent.
- Any Cartan subgalgebra $\mathfrak c$ decomposes as $\mathfrak t\oplus\mathfrak n$ where $\mathfrak t$ consists of diagonalizable and $\mathfrak n$ of nilpotent matrices.
- All elements of t commute and are thus simultaneously diagonalizable.
- We can diagonalize the toral subalgebra t by Jordan decomposition of a generic element of c.

The algorithm

Algorithm

- (i) Compute the Lie algebra \mathfrak{g}_I .
- (ii) Pick $x \in \mathfrak{g}_I$ randomly and compute $\mathfrak{c} = \ker(\operatorname{ad}(x)^{\dim \mathfrak{g}_I})$.
- (iii) Check if \mathfrak{c} is Cartan, otherwise try again with new x.
- (iv) Decompose $\mathfrak{c} = \mathfrak{t} \oplus \mathfrak{n}$.
- (v) Diagonalize t with a suitable $S \in GL_n(\mathbb{C})$.
- (vi) Check if S.I is binomial (or toric).

Note

If V(I) is not binomial, then the last step must return FALSE.

The algorithm is implemented in SAGE and runs on relevant examples.

Back to mathoverflow...

SageMath version 10.3, Release Date: 2024-03-19

```
Using Python 3.11.8. Type "help()" for help.
sage: load("isToric.sage")
sage: R.<e,t,r,y,q,u,w,o> = PolynomialRing(QQ)
 ....: I = ideal (e*t-r*v-a*u+w*o. w*t-a*v-r*u+e*o. w*e-a*r-v*u+t*o)
sage: R
Multivariate Polynomial Ring in e, t, r, y, q, u, w, o over Rational Field
sage: I
Ideal (e^{t} - r^{*}y - q^{*}u + w^{*}o, -y^{*}q - r^{*}u + t^{*}w + e^{*}o, -r^{*}q - y^{*}u + e^{*}w + t^{*}o)
sage: ideal_is_toric(I)
searching torus
diagonalizing torus
diagonalizing ideal
checking if ideal is binomial and prime after the coordinate change
       \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}
       [-1 1 -1 1 1 -1 1 -1]
       [1-1 1-1 1-1]
       \begin{bmatrix} -1 & -1 & -1 & -1 & 1 & 1 & 1 \end{bmatrix}
       Γ1 1 -1 -1 1 1 -1 -1]
       \begin{bmatrix} -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 \end{bmatrix}
       \begin{bmatrix} 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \end{bmatrix}
True, [-1 -1 1 1 1 1 -1 -1]
```

Non-homogeneous ideals are in reach

If I is not homogeneous, just test its homogenization I^h !

- We look for affine linear coordinate changes.
- Consider the set of matrices fixing the homogenization variable, i.e.

$$S = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \star & & \\ \vdots & \star & \\ \star & & \end{pmatrix}$$

.

• Do all computations in the Lie algebra of (n + 1)-matrices that have e_0 as a left eigenvector.

Non-reduced schemes are out of reach

Example: non-prime ideals

- Consider the binomial ideal $I = \left\langle x^4, y^4, x^3y xy^3 \right\rangle$
- The Lie algebra g_I consists only of multiples of the identity.
- Applying a linear coordinate change does not change anything about this.
- Thus we will never find the binomial structure using symmetry Lie algebras.
- We don't understand binomial schemes very well.

Experiments and performance

Toric models in statistics

- Let G be an undirected graph with edge set E.
- Gaußian Graphical Model:

$$\mathcal{M}_G = \left\{ \Sigma \in \mathrm{PD}_n : \Sigma_{ij}^{-1} = 0 \text{ for } ij \notin E \right\}.$$

- When is (the closure of) \mathcal{M} a toric variety?
- Challenge: We don't know many vanishing ideals of \mathcal{M}_G .
- Misra/Sullivant: gen. deg. $\leq 2 \Rightarrow$ toric (original coordinates).

All graphs on 4 vertices

- Computations in 10 variables.
- All vanishing ideals can be computed.
- Exactly those which are toric in original coordinates are toric.
- $\bullet\,$ Lie algebras are usually large, live in GL_{10} now.

graph	dim model	dim Lie algebra	dim max tori	can be made toric		
diamond	9	30	6	no		
paw	8	52	8	yes		
cycle	8	4	4	no		
claw	7	37	7	yes		
path	7	33	7	yes		
		•				

5, 6, 7 vertices

- $\bullet\,$ Computations in 15 / 21 / 28 variables still mostly doable.
- From 6 vertices on, hardly any vanshing ideals known.
- Use CI ideal?
 - This computes a maximal torus acting on one component.
 - But no simple way to compute dimension of orbits or stabilizers.
- No example of an ideal that is toric after coordinate change but not before.

Outlook

Closing remarks

- The algorithm always computes a maximal torus acting on V(I).
- Study special cases, e.g. group G_I is a torus, base change is unique.
- Looking for more examples
- What to do with knowledge about low-codimension tori acting on varieties?
- Code available at https://github.com/villjulian/isToric

Outlook

Closing remarks

- The algorithm always computes a maximal torus acting on V(I).
- Study special cases, e.g. group G_I is a torus, base change is unique.
- Looking for more examples
- What to do with knowledge about low-codimension tori acting on varieties?
- Code available at https://github.com/villjulian/isToric

Thanks for listening!