Efficiently deciding if an ideal is toric after a linear coordinate change

Thomas Kahle and Julian Vill

Otto-von-Guericke-Universität Magdeburg

June 2, 2025

Definition. A prime ideal $I \subset k[x_1, ..., x_n]$ is **toric** if it can be generated by pure differences of monomials:

$$I = \langle x^u - x^v \mid u, v \in \mathbb{N}^n \rangle$$

Question: Given a prime ideal $I \subset k[x_1, ..., x_n]$, does there exist a linear coordinate change $g \in GL_n(k)$ such that g.I is toric?

- Is this decidable on a Turing machine?
- Can such a *g* be computed? Efficiently?

Why?

- Sparse equations are better than dense equations.
 - Is *I* generated by binomials?
 - Does *I* contain a binomial?
 - Is *I* generated by binomials after linear coordinate change?
 - Does *I* contain a binomial after a linear coordinate change?
 - Does *I* contain a polynomial with at most *t* terms?
- Toric ideals are nice
 - Make interesting varieties but with combinatorial theory.
 - Gröbner bases of toric ideals are polyhedral objects.
 - Toric varieties appear in applications, e.g. discrete exponential families.
- Any new tool allows new larger scale experiments.

Examples of hidden toric structure

- Group based models in phylogenetics become toric in Fourier coordinates
- Cumulant coordinates in statistics can dramatically shorten polynomials
 - E.g. the tangential variety to Segre becomes toric (non-linear, though)
- Chemical reaction network theory: toric steady states

math**overflow**

🕈 Home	Proving that a variety is not (isomor	phic to) a toric variety	Ask Question			
Questions	Asked 12 years, 2 months ago Modified 6 years, 9 months ago Viewed 853 times					
🖗 Tags	Is there an algorithmic (or other) way to prove that a	Featured on Meta				
Saves	toric ideals are binomial prime ideals. There he could	1 I'd be happy with an algebraic answer (for affine or projective varieties), using the fact that toric ideals are binomial prime ideals. There are could use that the coordinate rings are				
A Unanswered	 characterized as those admitting a fine grading by a binomial prime ideal (Prop. 1.11 in Eisenbud/Sturmfe 	Hot Meta Posts				
Looking for your reama.	This question resulted from an Example that I discussed with Mateusz Michalek. The example is: let V be the Zariski closure of the image of the parameterization:		14 Why is the site being flooded with junk right now? What is being done about it?			
		$(p_1a_1a_2a_3 + p_2b_1b_2b_3)$	Related			
		$p_1a_1a_2b_3 + p_2b_1b_2a_3 p_1a_1b_2a_3 + p_2b_1a_2b_3$	26 Is there always a toric isomorphism between isomorphic toric varieties?			
	$(p_1,p_2,a_1,a_2,a_3,b_1,b_2,b_3) \to$	$p_1a_1b_2b_3 + p_2b_1a_2a_3$ $p_1b_1a_2a_3 + p_2a_1b_2b_3$	7 nef Cone of a Toric Variety			
		$p_1b_1a_2b_3 + p_2a_1b_2a_3$	2 When is the blow-up of a closed sub- variety of a toric variety a toric variety?			
		$\begin{pmatrix} p_1b_1b_2a_3 + p_2a_1a_2b_3\\ p_1b_1b_2b_3 + p_2a_1a_2a_3 \end{pmatrix}$	6 Isomorphic equivariant sheaves are equivariantly isomorphic on a toric variety			
	Implicitization using Macaulay2 is quick and yields a complete intersection: $\langle et - ry - qu + wo, wt - qy - ru + eo, we - qr - yu + to \rangle \subset k[q, w, e, r, t, y, u, o]$		1 Is this toric variety always smooth?			
			Question feed			
	How to prove that V is not toric?					
	toric-varieties ac.commutative-algebra					
	Share Cite Edit Close Delete Flag	asked Apr 5, 2012 at 15:33 Thomas Kahle				

No toric structure: Lisa Nicklasson's example

Are all discrete Bayesian networks toric after linear coordinate changes?

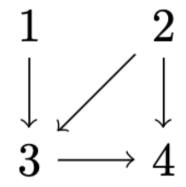
Consider the prime ideal generated by

 $\begin{vmatrix} p_{1111} + p_{1112} + p_{1121} + p_{1122} & p_{1211} + p_{1212} + p_{1221} + p_{1222} \\ p_{2111} + p_{2112} + p_{2121} + p_{2122} & p_{2211} + p_{2212} + p_{2221} + p_{2222} \end{vmatrix}$

and

 $\begin{vmatrix} p_{1111} & p_{2111} \\ p_{1112} & p_{2112} \end{vmatrix}, \begin{vmatrix} p_{1121} & p_{2121} \\ p_{1122} & p_{2122} \end{vmatrix}, \begin{vmatrix} p_{1211} & p_{2211} \\ p_{1212} & p_{2212} \end{vmatrix}, \begin{vmatrix} p_{1221} & p_{2221} \\ p_{1222} & p_{2222} \end{vmatrix}$

Theorem. No linear coordinate change makes this toric.



No toric structure: Lisa Nicklasson's example

Foundations of Computational Mathematics (2019) 19:1363–1385 https://doi.org/10.1007/s10208-018-9405-0

When is a Polynomial Ideal Binomial After an Ambient Automorphism?

Lukas Katthän¹ · Mateusz Michałek^{2,3} · Ezra Miller⁴

- The locus in $\mathrm{GL}_n(k)$ which makes an ideal binomial is constructible.
- Can in principle be computed using comprehensive Gröbner bases.
- Solves a much more general problem.
- Not efficient enough for above examples.

Goal: Make it efficient in more specific situation.

Approach

A variety is toric if it is the closure of a torus orbit of one point. Find the maximal torus acting on V(I) in GL_n !

Here *torus* always means algebraic torus, i.e. a commutative group (of matrices) that is isomorphic to $(\mathbb{C}^*)^k$, e.g. a group of diagonal matrices.

Example

- + Let $I = \langle xz y^2 \rangle \in \mathbb{C}[x, y, z]$. Its variety is toric.
- A 2d -algebraic torus acting on it is generated by the matrices

$$\begin{pmatrix} a & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a^{-1} \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & b^2 \end{pmatrix}, \quad a, b \in \mathbb{C}^*$$

- $V(xz y^2)$ is the closure of the orbit of (1, 1, 1) under the action of $(\mathbb{C}^*)^2$.
- The torus is a (diagonal) subgroup of $\mathrm{GL}_3(\mathbb{C})$ and thus easy to find.
- Necessarily this torus must be a subgroup of the subgroup fixing the ideal *I*!
- Also $V((x+y)z y^2)$ is a toric variety (obvious?).
- There is some 2d (non-diagonal) algebraic torus in the group fixing this ideal.
 Find it! Diagonalize it!

Setup

- Fix $k = \mathbb{C}$, but in reality, start with \mathbb{Q} and algebraically extend as needed.
- + $I \subset \mathbb{C}[x_1, ..., x_n]$ is assumed prime and homogeneous.
- The Lie group $\mathrm{GL}_n(\mathbb{C})$ acts on the polynomial ring via

$$g.f(x)=f\circ g^{-1}(x)=f\bigl(g^{-1}\cdot x\bigr)$$

• Consider the stabilizer of *I*:

$$G_I \coloneqq \{g \in \operatorname{GL}_n(\mathbb{C}) \mid g.I \subset I\}$$

This is itself a Lie group (like any closed subgroup of $\operatorname{GL}_n(\mathbb{C})$).

• Lie algebra \mathfrak{g}_I of G_I can be computed from I using linear algebra.

Symmetry Lie algebras (Maraj and Pal, arXiv:2309.10741)

The Lie algebra 𝔅_I can be computed as the stabilizer of an action *:
g * c = 0 for c ∈ C

•
$$g * x_i = g \cdot x_i$$

- + g*(pq)=(g*p)q+p(g*q) for all $p,q\in\mathbb{C}[x_1,...,x_n]$
- Then $\mathfrak{g}_I = \{g \in \mathbb{C}^{n \times n} \mid g * I \subset I\}$
- Question 34: Can symmetry Lie algebras detect if *I* is toric?

[MP23] criterion: If $\dim(G_I) = \dim(\mathfrak{g}_I) < \dim(I)$ then V(I) is not toric.

This solves Lisa Nicklasson's example again because there $\dim(\mathfrak{g}_I) = 8$ (but 5 equations in 16 variables).

Our plan for Question 34

- If *I* is prime and I' = g.I is binomial, there is a maximal torus T' in G_I such that the orbit of a generic point in V(I) is dense in V(I).
- Can compute *some* maximal torus T in G_I (or corresponding algebra in \mathfrak{g}_I) using Lie theory and Cartan algebras.
- All maximal tori are conjugate, so T and T' are. Thus the orbit of a generic point of V(I) under T is also dense.
- To find the coordinate transform, we diagonalize the torus. Then it acts as

$$((t_1,...,t_d),(x_1,...,x_n)) \to (t_1^a x_1,...t_n^a x_n)$$

for some $a_1, ..., a_n \in \mathbb{Z}^d$.

Computing a maximal torus

- We compute a nilpotent and self-normalizing (Cartan) subalgebra **c**.
- Its Lie group is the centralizer of a maximal torus and of the form $T \times C$ with T a maximal torus and C unipotent.
- Any Cartan subgalgebra $\mathfrak c$ decomposes as $\mathfrak t\oplus\mathfrak n$ where $\mathfrak t$ consists of diagonalizable and n of nilpotent matrices.
- All elements of t commute and are thus simultaneously diagonalizable.
- We can diagonalize the toral subalgebra t by Jordan decomposition of a generic element of c.

The algorithm

- 1. Compute the Lie algebra \mathfrak{g}_I .
- 2. Pick $x \in \mathfrak{g}_I$ randomly and compute $\mathfrak{c} = \ker(\operatorname{ad}(x)^{\dim \mathfrak{g}_I})$.
- 3. Check if \mathfrak{c} is Cartan, otherwise try again with new x.
- 4. Decompose $\mathfrak{c} = \mathfrak{t} + \mathfrak{n}$.
- 5. Diagonalize t with a suitable $S \in GL_n(\mathbb{C})$.
- 6. Check if S.I is binomial (or toric).

Note: If V(I) is not binomial, then the last step must return FALSE.

The algorithm is implemented in SAGE and runs on relevant examples.

Back to mathoverflow...

```
SageMath version 10.6, Release Date: 2025-03-31
Using Python 3.12.5. Type "help()" for help.
```

```
sage: load ("isToric.sage")
....: R. < e, t, r, y, q, u, w, o > = PolynomialRing(QQ)
....: I = ideal (e^{t-r*y-q*u+w*o}, w^{t-q*y-r*u+e*o}, w^{e-q*r-y*u+t*o})
....: ideal is toric(I)
searching torus
diagonalizing torus
diagonalizing ideal
checking if ideal is binomial and prime after the coordinate change
            ſ 1
       \begin{bmatrix} 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \end{bmatrix}
       \begin{bmatrix} -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 \end{bmatrix}
       \begin{bmatrix} -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \end{bmatrix}
       \begin{bmatrix} 1 & 1 & 1 & 1 & -1 & -1 & -1 \end{bmatrix}
       \begin{bmatrix} -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 \end{bmatrix}
True, [1 1 -1 -1 -1 1 1]
```

Non-homogeneous ideals are in reach

If I is not homogeneous, just test its homogenization I^h !

- We look for affine linear coordinate changes.
- Consider the set of matrices fixing the homogenization variable, i.e.

$$S = \begin{pmatrix} \frac{1 \mid 0 \quad \cdots \quad 0}{\star} \\ \vdots \\ \star \\ \end{pmatrix}$$

- Do all computations in the Lie algebra of (n+1) -matrices that have e_0 as a left eigenvector.

Non-reduced schemes are out of reach

- Consider the zero-dimensional(!) binomial ideal $I = \langle x^4, y^4, x^3y xy^3 \rangle$
- The Lie algebra \mathfrak{g}_I consists only of multiples of the identity.
- Applying a linear coordinate change does not change anything about this.
- Thus we will never find the binomial structure using symmetry Lie algebras.

We just don't understand binomial schemes very well!

Experiments: Toric Gaußian graphical models

- Let G be an undirected graph with edge set E.
- Gaußian graphical model:

$$M_G = \left\{ \Sigma \in \mathrm{PD}_n : \Sigma_{ij}^{-1} = 0 \ \text{ for } ij \notin E \right\}$$

- When is (the closure of) M a toric variety?
- Challenge: We don't know many vanishing ideals of M_G .
- Misra/Sullivant: gen. deg. $\leq 2 \Rightarrow$ toric (in original coordinates).

Experiments: Toric Gaußian graphical models

All graphs on 4 vertices:

- Computations in 10 variables.
- All vanishing ideals can be computed.
- Exactly those which are toric in original coordinates are toric.
- Lie algebras are usually large, live in $\operatorname{GL}_{10}(\mathbb{C})$ now.

graph	dim model	dim Lie algebra	dim max tori	(can be made) toric
diamond	9	30	6	no
paw	8	52	8	yes
cycle	8	4	4	no
claw	7	37	7	yes
path	7	33	7	yes
path			/	y CS

Experiments: Toric Gaußian graphical models

5, 6, 7 vertices:

- Computations in 15 / 21 / 28 variables still mostly doable.
- From 6 vertices on, hardly any vanishing ideals known.
- Use CI ideal?
 - This computes a maximal torus acting on one component.
 - But no simple way to compute dimension of orbits or stabilizers.
- No example of an ideal that is toric after coordinate change but not before.

Outlook

- The algorithm always computes a maximal torus acting on V(I).
- Study special cases, e.g. group G_I is a torus, base change is unique.
- Looking for more examples.
- What to do with knowledge about low-codimension tori acting on varieties?
- Code available at https://github.com/villjulian/isToric.

Thanks for listening!