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Theorem

If ∆ is the (d − 1)-dimensional skeleton of d-dimensional Cohen-
Macaulay complex, then the generic initial ideal gin(I∆) is level. In
particular, the h-vector of ∆ is a pure O-sequence.



Definitions (Simplicial complexes)

Let ∆ be a simplicial complex on [n] := {1, . . . , n}.

Stanley-Reisner ideal: I∆ =

〈∏
i∈G

xi : G /∈ ∆

〉
.

Stanley-Reisner ring: k[∆] := k[x1, . . . , xn]/I∆



Simplicial complexes

∆ is

• pure if all inclusion-maximal faces (:=facets) have the same size

• Cohen-Macaulay if k[∆] is a Cohen-Macaulay ring.

Reisner’s criterion: ∆ is Cohen-Macaulay if and only if all links in ∆
have only top-dimensional homology.

Field assumptions

• Main theorem does not depend on the field.

• The Cohen-Macaulay property does depend on char(k)

• in proofs we can assume whatever is convenient about k.



Dimension convention

The Krull dimension of k[∆] equals the maximal size of facets of ∆.
Throughout:

d := dimk[∆] = dim(∆) + 1

• d is the rank of ∆.

Skeleton (Truncation)

The (d− 1)-dimensional skeleton of ∆ is {F ∈ ∆ : |F | ≤ d}.



Why do we care about k[∆] ?

k[∆] encodes the combinatorics of ∆.



The finely graded Hilbert Series: sum of all monomials in k[∆]

HS(k[∆], (x1, . . . , xn)) =
∑
{xu : xu /∈ I∆}

⇒ h-vector encodes face numbers!
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The finely graded Hilbert Series: sum of all monomials in k[∆]
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t|F |(1− t)n−|F |

(1− t)n
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The finely graded Hilbert Series: sum of all monomials in k[∆]

HS(k[∆], t) =

d∑
k=0

fkt
k(1− t)n−k

(1− t)n

• where fk = #{faces of size k}
• (f0, f1, . . . , fd) is the f -vector.

⇒ h-vector encodes face numbers!
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The finely graded Hilbert Series: sum of all monomials in k[∆]

HS(k[∆], t) =

d∑
k=0

fkt
k(1− t)d−k

(1− t)d

If you compute the Hilbert series in Macaulay2 you get

HS(k[∆], t) =
hdt

d + · · ·+ h1t+ h0

(1− t)d

(h0, h1, . . . , hd) is the h-vector of ∆ (trailing zeros possible).

⇒ h-vector encodes face numbers!



The finely graded Hilbert Series: sum of all monomials in k[∆]

d∑
k=0

fkt
k(1− t)d−k = hdt

d + · · ·+ h1t+ h0

Plug in t−1 and get:

d∑
i=0

hit
d−i =

d∑
i=0

fi(t− 1)d−i

⇒ h-vector encodes face numbers!



Studying h- or f -vectors of simplicial complexes

Some landmarks

• Euler’s polyhedron formula: E −K + F = 2.

• Schützenberger/Kruskal/Katona: Characterization of the set of

f -vectors of simplicial complexes (0 < fi+1 ≤ f{i+1}
i )

• Pure simplicial complexes? → Ziegler Exercise 8.16
Don’t try: It would solve all basic problems in design theory.

• Billera/Lee/Stanley: The g-theorem characterizes h-vectors of
boundaries of simplicial polytopes.

• Includes upper- and lower bound theorem.
• open for simplicial spheres

⇒ Study subclasses of pure complexes.
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Cohen-Macaulay complexes are pure.

Theorem (Macaulay/Stanley)

The set of h-vectors of Cohen-Macaulay complexes coincides with
Hilbert functions of monomial Artinian k-algebras (O-sequences).

Proof

• Choose a regular sequence of linear elements li.

• Pass to k[∆]/(li) (Artinian reduction)

• Take initial ideal (to make it monomial)

What about subclasses ?
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Definition

∆ is (a) matroid if for any faces F,G ∈ ∆ with |F | > |G|, there
exists i ∈ F \G such that G ∪ i ∈ ∆.

Matroid terminology

• |F | is the rank of F .

• Facets of ∆ are called bases.

• Minimal non-faces of ∆ are called circuits.



Matroid are everywhere!

• ∆ = sets of independent columns of a matrix.

• ∆ = sets of edges of a graph not containing a circuit

• ∆ = collection of sets for which the greedy algorithm finds a
maximum weight set (independent of weights).

• . . .



What properties should h-vectors of matroids have

Let ∆ be matroid.

• k[∆] is CM ⇒ h is an O-sequence

• k[∆] is level:

0← k[∆]← F0 ← F1 ← . . .← k[x](−a)βp ← 0
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Artinian monomial algebra: all inner corners are in same degree.



What properties should h-vectors of matroids have

Let ∆ be matroid.

• k[∆] is CM ⇒ h is an O-sequence

• k[∆] is level:

0← k[∆]← F0 ← F1 ← . . .← k[x](−a)βp ← 0

Conjecture (Stanley)

The h-vector of a matroid complex ∆ is the Hilbert function of an
Artinian monomial level algebra (a pure O-sequence).



Pure O-sequences

• Satisfy the Hibi inequalities:

h0 ≤ h1 ≤ · · · ≤ hb d
2
c hi ≤ hd−i 0 ≤ i ≤ bd

2
c

(matroid h-vectors do too, but they satisfy more)

• Need not be unimodal (some matroid h-vectors are (Huh))

• Can probably not be characterized well. See On the shape of
pure O-sequences (BMMNZ)

All proofs so far produce the pure O-sequence explicitly.



Artinian reduction revisited

∆ matroid Artinian monomial level

Stanley-Reisner ring k[∆] 7 3 3

Artinian reduction k[∆]/(li) 3 7 3

Art. red. of gin(I) k[x]/(gin(I∆) + xi) 3 3 ?
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The generic initial ideal

Fix a term order <

• Do random linear coordinate change on I.

• Take initial ideal.

• With probability one you get the generic initial ideal gin<(I).

Properties

• h-vector is preserved.

• extremal Betti numbers are preserved.

• If char(k) = 0, then gin(I) is strongly stable:
• If i < j and xj |m for some m ∈ gin(I), then xi

xj
m ∈ gin(I).

• Eliahou-Kervaire resolution gives formulas for the Betti numbers.

• admits regular sequence of variables.
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When is gin(I∆) level?



Lemma 1

Let I ⊆ k[x] be graded and reg(I) = k. If pd(I<k) < pd(I) =: p

βp(I) = βp,p+k(I) = βp,p+k(gin(I)) = βp(gin(I))
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Lemma 2

If ∆ is CM of rank d + 1 and F a minimal non-face of size d + 1,
then ∆ ∪ F is CM.

0→ k[∆ ∪ F ]→ k[∆]⊕ k[F ]→ k[∆ ∩ F ]→ 0

depth :

≥ d+ 1

d+ 1 d+ 1 d
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Theorem

If ∆ is the rank d skeleton of some rank d + 1 Cohen-Macaulay
complex, then the generic initial ideal gin(I∆) is level.

Proof

• reg(I)− 1 = reg(k[∆]) = d
(Hochster: ≤ d, generator in degree d+ 1)

• Let J = (I∆)≤d and Γ = ∆(J).
• For Lemma 1 need pd(k[Γ]) < pd(k[∆])
• ⇔ depth(k[Γ]) > d+ 1
• ⇔ Γd := rank (d+ 1) skeleton of Γ is CM

• Let Ω be the CM complex of which ∆ is the skeleton.

• Facets of Γd are each either facets of Ω or minimal non-faces of
size d+ 1 (by construction of Γ).

• Lemma 2 ⇒ Γd is CM.
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How many matroids are truncations of other matroids?

Example

No complete bipartite graph (matroid of rank 2) is a truncation.

Example

If a rank d matroid ∆ is a truncation, then it is a truncation of some
rank d+ 1 matroid Γ.

• Any facet of Γ is a spanning circuit (:= size d+ 1) of ∆.

There are (many) matroids without spanning circuits!
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• Any facet of Γ is a spanning circuit (:= size d+ 1) of ∆.

There are (many) matroids without spanning circuits!



Brylawski’s algorithm

Let ∆ be a matroid with a spanning circuit. Brylawski’s algorithm
decides if ∆ is a truncation of some Γ and constructs the freest
possible Γ.

Example

Schubert matroids (generalized Catalan matroids = PI matroids) have
componentwise linear I∆ and in particular satisfy Stanley’s conjecture.



∆ matroid Artinian monomial level

Stanley-Reisner ring k[∆] 7 3 3

Artinian reduction k[∆]/(li) 3 7 3

Art. red. of gin(I) k[x]/(gin(I∆) + xi) 3 3 ?

Wish

Artinian monomial level

weak gin k[x]/(weakgin(I∆) + (xi − xj) 3 3 3



special constructions of pure O-sequences

• A construction that (under a compatibility condition) allows to
find pure O-sequences inductively (from link and deletion).

A large example

h = (1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 112, 116, 111, 96, 70, 40, 14)

is the h-vector of a matroid on 20 vertices.

Our method proves: h equals the Hilbert function of the Artinian monomial level
algebra k[a, b, c, d]/I where

I =
(
a10, a6b4, a3b10, ab13, b15, a3b4c3, b11c3, a6c5, ab4c5, b5c5, ac9, b2c10,

c16, ad, b9d, b5c4d, c13d, b2c4d4, c11d4, b5d6, c7d6, b2d10, c3d10, d14).
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Parallel elements

Two elements i, j are parallel in ∆ if {i, j} is a circuit.

Dual matroid

The matroid dual of ∆ has the complements of facets of ∆ as facets.

Theorem

• Stanley’s conjecture holds for matroids of CM type at most five.

• Stanley’s conjecture holds if dual has (rank+2) parallel classes.



The search for a counterexample

• Matroids on nine or fewer vertices satisfy Stanley’s conjecture
(deLoera/Kemper/Klee)

• Type must be at least 6.

• To confirm a counterexample, need to check
(
N
6

)
possible socles

where N =
(
n+s−1
n−1

)
is a binomial coefficient.

• Hard to exploit symmetry (checking a single socle is quick).

⇒ Probably not many checkable matroids left.

Thank you!
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