The generic initial ideal of a matroid joint work with Matteo Varbaro and Alex Constantinescu arXiv: *Generic and special constructions of pure O-sequences*

Thomas Kahle (TU Munich)

4 July 2013

Theorem

If Δ is the (d-1)-dimensional skeleton of d-dimensional Cohen-Macaulay complex, then the generic initial ideal $gin(I_{\Delta})$ is level. In particular, the h-vector of Δ is a pure O-sequence.

Definitions (Simplicial complexes)

Let Δ be a simplicial complex on $[n] := \{1, \ldots, n\}$.

Stanley-Reisner ideal:

$$I_{\Delta} = \left\langle \prod_{i \in G} x_i : G \notin \Delta \right\rangle.$$

Stanley-Reisner ring: $\Bbbk[\Delta] := \Bbbk[x_1, \dots, x_n]/I_\Delta$

Simplicial complexes

 Δ is

- pure if all inclusion-maximal faces (:=facets) have the same size
- Cohen-Macaulay if $\mathbb{k}[\Delta]$ is a Cohen-Macaulay ring.

Reisner's criterion: Δ is Cohen-Macaulay if and only if all links in Δ have only top-dimensional homology.

Field assumptions

- Main theorem does not depend on the field.
- The Cohen-Macaulay property does depend on $\mathsf{char}(\Bbbk)$
- in proofs we can assume whatever is convenient about \Bbbk .

Dimension convention

The Krull dimension of $\Bbbk[\Delta]$ equals the maximal size of facets of $\Delta.$ Throughout:

$$d := \dim \mathbb{k}[\Delta] = \dim(\Delta) + 1$$

• d is the rank of Δ .

Skeleton (Truncation)

The (d-1)-dimensional skeleton of Δ is $\{F \in \Delta : |F| \leq d\}$.

Why do we care about $\Bbbk[\Delta]$?

 $\Bbbk[\Delta]$ encodes the combinatorics of $\Delta.$

$$HS(\Bbbk[\Delta], (x_1, \dots, x_n)) = \sum \{x^u : x^u \notin I_\Delta\}$$

$$HS(\mathbb{k}[\Delta], (x_1, \dots, x_n)) = \frac{\sum_{F \in \Delta} \prod_{i \in F} x_i \prod_{j \notin F} (1 - x_j)}{\prod_{i=1}^n (1 - x_i)}$$

$$HS(\mathbb{k}[\Delta], (t, \dots, t)) = \frac{\sum_{F \in \Delta} t^{|F|} (1-t)^{n-|F|}}{(1-t)^n}$$

$$HS(\mathbb{k}[\Delta], t) = \frac{\sum_{k=0}^{d} f_k t^k (1-t)^{n-k}}{(1-t)^n}$$

• where
$$f_k = #\{$$
faces of size $k\}$

•
$$(f_0, f_1, \ldots, f_d)$$
 is the *f*-vector.

$$HS(\mathbb{k}[\Delta], t) = \frac{\sum_{k=0}^{d} f_k t^k (1-t)^{d-k}}{(1-t)^d}$$

$$HS(\mathbb{k}[\Delta], t) = \frac{\sum_{k=0}^{d} f_k t^k (1-t)^{d-k}}{(1-t)^d}$$

If you compute the Hilbert series in Macaulay2 you get

$$HS(\Bbbk[\Delta], t) = \frac{h_d t^d + \dots + h_1 t + h_0}{(1-t)^d}$$

 (h_0, h_1, \ldots, h_d) is the *h*-vector of Δ (trailing zeros possible).

$$\sum_{k=0}^{d} f_k t^k (1-t)^{d-k} = h_d t^d + \dots + h_1 t + h_0$$

Plug in t^{-1} and get:

$$\sum_{i=0}^{d} h_i t^{d-i} = \sum_{i=0}^{d} f_i (t-1)^{d-i}$$

 \Rightarrow *h*-vector encodes face numbers!

Some landmarks

• Euler's polyhedron formula: E - K + F = 2.

Some landmarks

- Euler's polyhedron formula: E K + F = 2.
- Schützenberger/Kruskal/Katona: Characterization of the set of *f*-vectors of simplicial complexes (0 < f_{i+1} ≤ f_i^{i+1})

Some landmarks

- Euler's polyhedron formula: E K + F = 2.
- Schützenberger/Kruskal/Katona: Characterization of the set of *f*-vectors of simplicial complexes (0 < f_{i+1} ≤ f_i^{i+1})
- Pure simplicial complexes? \rightarrow Ziegler Exercise 8.16

Some landmarks

- Euler's polyhedron formula: E K + F = 2.
- Schützenberger/Kruskal/Katona: Characterization of the set of *f*-vectors of simplicial complexes (0 < f_{i+1} ≤ f_i^{i+1})
- Pure simplicial complexes? → Ziegler Exercise 8.16
 Don't try: It would solve all basic problems in design theory.

Some landmarks

- Euler's polyhedron formula: E K + F = 2.
- Schützenberger/Kruskal/Katona: Characterization of the set of *f*-vectors of simplicial complexes (0 < f_{i+1} ≤ f_i^{i+1})
- Pure simplicial complexes? → Ziegler Exercise 8.16 Don't try: It would solve all basic problems in design theory.
- Billera/Lee/Stanley: The *g*-theorem characterizes *h*-vectors of boundaries of simplicial polytopes.
 - Includes upper- and lower bound theorem.
 - open for simplicial spheres

 \Rightarrow Study subclasses of pure complexes.

Cohen-Macaulay complexes are pure.

Theorem (Macaulay/Stanley)

The set of *h*-vectors of Cohen-Macaulay complexes coincides with Hilbert functions of monomial Artinian \mathbb{k} -algebras (*O*-sequences).

Cohen-Macaulay complexes are pure.

Theorem (Macaulay/Stanley)

The set of *h*-vectors of Cohen-Macaulay complexes coincides with Hilbert functions of monomial Artinian \mathbb{R} -algebras (*O*-sequences).

Proof

- Choose a regular sequence of linear elements l_i .
- Pass to $\mathbb{k}[\Delta]/(l_i)$ (Artinian reduction)
- Take initial ideal (to make it monomial)

What about subclasses ?

Definition

 Δ is (a) matroid if for any faces $F, G \in \Delta$ with |F| > |G|, there exists $i \in F \setminus G$ such that $G \cup i \in \Delta$.

Matroid terminology

- |F| is the rank of F.
- Facets of Δ are called bases.
- Minimal non-faces of Δ are called circuits.

Matroid are everywhere!

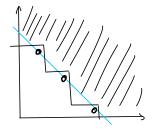
- $\Delta = \text{sets of independent columns of a matrix.}$
- $\Delta = {\rm sets}$ of edges of a graph not containing a circuit
- $\Delta =$ collection of sets for which the greedy algorithm finds a maximum weight set (independent of weights).

• . . .

What properties should h-vectors of matroids have

Let Δ be matroid.

- $\Bbbk[\Delta]$ is CM \Rightarrow *h* is an *O*-sequence
- $\mathbb{k}[\Delta]$ is level:


$$0 \leftarrow \Bbbk[\Delta] \leftarrow F_0 \leftarrow F_1 \leftarrow \ldots \leftarrow \Bbbk[\mathbf{x}](-a)^{\beta_p} \leftarrow 0$$

What properties should h-vectors of matroids have

Let Δ be matroid.

- $\Bbbk[\Delta]$ is CM \Rightarrow *h* is an *O*-sequence
- $\mathbb{k}[\Delta]$ is level:

$$0 \leftarrow \Bbbk[\Delta] \leftarrow F_0 \leftarrow F_1 \leftarrow \ldots \leftarrow \Bbbk[\mathbf{x}](-a)^{\beta_p} \leftarrow 0$$

Artinian monomial algebra: all inner corners are in same degree.

What properties should *h*-vectors of matroids have

Let Δ be matroid.

- $\Bbbk[\Delta]$ is CM \Rightarrow *h* is an *O*-sequence
- $\mathbb{k}[\Delta]$ is level:

$$0 \leftarrow \Bbbk[\Delta] \leftarrow F_0 \leftarrow F_1 \leftarrow \ldots \leftarrow \Bbbk[\mathbf{x}](-a)^{\beta_p} \leftarrow 0$$

Conjecture (Stanley)

The *h*-vector of a matroid complex Δ is the Hilbert function of an Artinian monomial level algebra (a pure *O*-sequence).

Pure *O*-sequences

• Satisfy the Hibi inequalities:

$$h_0 \le h_1 \le \dots \le h_{\lfloor \frac{d}{2} \rfloor}$$
 $h_i \le h_{d-i}$ $0 \le i \le \lfloor \frac{d}{2} \rfloor$

(matroid *h*-vectors do too, but they satisfy more)

- Need not be unimodal (some matroid *h*-vectors are (Huh))
- Can probably not be characterized well. See On the shape of pure O-sequences (BMMNZ)

All proofs so far produce the pure O-sequence explicitly.

Artinian reduction revisited

Δ matroid		Artinian	monomial	level
Stanley-Reisner ring	$\Bbbk[\Delta]$	×	1	

Artinian reduction revisited

Δ matroid		Artinian	monomial	level
Stanley-Reisner ring	$\Bbbk[\Delta]$	×	 Image: A second s	 Image: A second s
Artinian reduction	$\mathbb{k}[\Delta]/(l_i)$	1	×	1

Artinian reduction revisited

Δ matroid		Artinian	monomial	level
Stanley-Reisner ring	$\Bbbk[\Delta]$	×	√	\checkmark
Artinian reduction	$k[\Delta]/(l_i)$	1	×	\checkmark
Art. red. of $gin(I)$	$\mathbb{k}[\mathbf{x}]/(\mathrm{gin}(I_{\Delta}) + x_i)$	✓	✓	?

The generic initial ideal

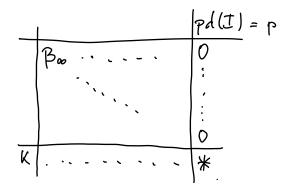
Fix a term order <

- Do random linear coordinate change on *I*.
- Take initial ideal.
- With probability one you get the generic initial ideal $gin_{<}(I)$.

The generic initial ideal

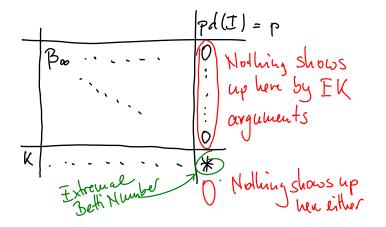
Fix a term order <

- Do random linear coordinate change on *I*.
- Take initial ideal.
- With probability one you get the generic initial ideal $gin_{<}(I)$.


Properties

- *h*-vector is preserved.
- extremal Betti numbers are preserved.
- If char(k) = 0, then gin(I) is strongly stable:
 - If i < j and $x_j | m$ for some $m \in gin(I)$, then $\frac{x_i}{x_j} m \in gin(I)$.
- Eliahou-Kervaire resolution gives formulas for the Betti numbers.
- admits regular sequence of variables.

When is $gin(I_{\Delta})$ level?


Lemma 1

Let $I \subseteq k[\mathbf{x}]$ be graded and $\operatorname{reg}(I) = k$. If $\operatorname{pd}(I_{\leq k}) < \operatorname{pd}(I) =: p$ $\beta_p(I) = \beta_{p,p+k}(I) = \beta_{p,p+k}(\operatorname{gin}(I)) = \beta_p(\operatorname{gin}(I))$

Lemma 1

Let $I \subseteq \mathbb{k}[\mathbf{x}]$ be graded and $\operatorname{reg}(I) = k$. If $\operatorname{pd}(I_{< k}) < \operatorname{pd}(I) =: p$ $\beta_p(I) = \beta_{p,p+k}(I) = \beta_{p,p+k}(\operatorname{gin}(I)) = \beta_p(\operatorname{gin}(I))$

Lemma 2

If Δ is CM of rank d+1 and F a minimal non-face of size d+1, then $\Delta \cup F$ is CM.

$$0 \to \Bbbk[\Delta \cup F] \to \Bbbk[\Delta] \oplus \Bbbk[F] \to \Bbbk[\Delta \cap F] \to 0$$

Lemma 2

If Δ is CM of rank d+1 and F a minimal non-face of size d+1, then $\Delta \cup F$ is CM.

$$\begin{split} 0 &\to \Bbbk[\Delta \cup F] \to \Bbbk[\Delta] \oplus \Bbbk[F] \to \Bbbk[\Delta \cap F] \to 0 \\ \text{depth}: & d+1 \quad d+1 \quad d \end{split}$$

Lemma 2

If Δ is CM of rank d+1 and F a minimal non-face of size d+1, then $\Delta \cup F$ is CM.

$$\begin{split} 0 &\to \mathbb{k}[\Delta \cup F] \to \mathbb{k}[\Delta] \oplus \mathbb{k}[F] \to \mathbb{k}[\Delta \cap F] \to 0 \\ \mathsf{depth}: &\geq d+1 \quad d+1 \quad d+1 \quad d \end{split}$$

Theorem

If Δ is the rank d skeleton of some rank d+1 Cohen-Macaulay complex, then the generic initial ideal ${\rm gin}(I_\Delta)$ is level.

Proof

 reg(I) − 1 = reg(k[Δ]) = d (Hochster: ≤ d, generator in degree d + 1)

Theorem

If Δ is the rank d skeleton of some rank d+1 Cohen-Macaulay complex, then the generic initial ideal $gin(I_{\Delta})$ is level.

Proof

• $\operatorname{reg}(I) - 1 = \operatorname{reg}(\Bbbk[\Delta]) = d$ (Hochster: $\leq d$, generator in degree d + 1)

• Let
$$J = (I_{\Delta})_{\leq d}$$
 and $\Gamma = \Delta(J)$.

- For Lemma 1 need $pd(\Bbbk[\Gamma]) < pd(\Bbbk[\Delta])$
- $\Leftrightarrow \mathsf{depth}(\Bbbk[\Gamma]) > d + 1$
- $\Leftrightarrow \Gamma_d := \operatorname{rank} (d+1)$ skeleton of Γ is CM

Theorem

If Δ is the rank d skeleton of some rank d+1 Cohen-Macaulay complex, then the generic initial ideal $gin(I_{\Delta})$ is level.

Proof

- $\operatorname{reg}(I) 1 = \operatorname{reg}(\Bbbk[\Delta]) = d$ (Hochster: $\leq d$, generator in degree d + 1)
- Let $J = (I_{\Delta})_{\leq d}$ and $\Gamma = \Delta(J)$.
 - For Lemma 1 need $\mathrm{pd}(\Bbbk[\Gamma]) < \mathrm{pd}(\Bbbk[\Delta])$
 - $\Leftrightarrow \mathsf{depth}(\Bbbk[\Gamma]) > d + 1$
 - $\Leftrightarrow \Gamma_d := \operatorname{rank} (d+1)$ skeleton of Γ is CM
- Let Ω be the CM complex of which Δ is the skeleton.
- Facets of Γ_d are each either facets of Ω or minimal non-faces of size d + 1 (by construction of Γ).
- Lemma $2 \Rightarrow \Gamma_d$ is CM.

How many matroids are truncations of other matroids?

Example

No complete bipartite graph (matroid of rank 2) is a truncation.

How many matroids are truncations of other matroids?

Example

No complete bipartite graph (matroid of rank 2) is a truncation.

Example

If a rank d matroid Δ is a truncation, then it is a truncation of some rank d+1 matroid $\Gamma.$

• Any facet of Γ is a spanning circuit (:= size d + 1) of Δ .

There are (many) matroids without spanning circuits!

Brylawski's algorithm

Let Δ be a matroid with a spanning circuit. Brylawski's algorithm decides if Δ is a truncation of some Γ and constructs the *freest* possible Γ .

Example

Schubert matroids (generalized Catalan matroids = PI matroids) have componentwise linear I_{Δ} and in particular satisfy Stanley's conjecture.

Δ matroid	Artinian	monomial	level	
Stanley-Reisner ring	$k[\Delta]$	×	1	 Image: A start of the start of
Artinian reduction	$k[\Delta]/(l_i)$	✓	×	1
Art. red. of $gin(I)$	$\mathbb{k}[\mathbf{x}]/(\mathrm{gin}(I_{\Delta}) + x_i)$	 Image: A second s	✓	?

Wish				
		Artinian	monomial	level
weak gin	$k[\mathbf{x}]/(weakgin(I_\Delta) + (x_i - x_j))$	 Image: A set of the set of the	✓	 Image: A start of the start of

special constructions of pure O-sequences

• A construction that (under a compatibility condition) allows to find pure *O*-sequences inductively (from link and deletion).

special constructions of pure O-sequences

• A construction that (under a compatibility condition) allows to find pure *O*-sequences inductively (from link and deletion).

A large example

h = (1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 112, 116, 111, 96, 70, 40, 14)

is the h-vector of a matroid on 20 vertices.

Our method proves: h equals the Hilbert function of the Artinian monomial level algebra $\Bbbk[a,b,c,d]/I$ where

$$\begin{split} I &= \big(a^{10}, a^6 b^4, a^3 b^{10}, a b^{13}, b^{15}, a^3 b^4 c^3, b^{11} c^3, a^6 c^5, a b^4 c^5, b^5 c^5, a c^9, b^2 c^{10}, \\ & c^{16}, a d, b^9 d, b^5 c^4 d, c^{13} d, b^2 c^4 d^4, c^{11} d^4, b^5 d^6, c^7 d^6, b^2 d^{10}, c^3 d^{10}, d^{14}\big). \end{split}$$

Parallel elements

Two elements i, j are parallel in Δ if $\{i, j\}$ is a circuit.

Dual matroid

The matroid dual of Δ has the complements of facets of Δ as facets.

Theorem

- Stanley's conjecture holds for matroids of CM type at most five.
- Stanley's conjecture holds if dual has (rank+2) parallel classes.

The search for a counterexample

- Matroids on nine or fewer vertices satisfy Stanley's conjecture (deLoera/Kemper/Klee)
- Type must be at least 6.
- To confirm a counterexample, need to check $\binom{N}{6}$ possible socles where $N = \binom{n+s-1}{n-1}$ is a binomial coefficient.
- Hard to exploit symmetry (checking a single socle is quick).

 \Rightarrow Probably not many checkable matroids left.

The search for a counterexample

- Matroids on nine or fewer vertices satisfy Stanley's conjecture (deLoera/Kemper/Klee)
- Type must be at least 6.
- To confirm a counterexample, need to check $\binom{N}{6}$ possible socles where $N = \binom{n+s-1}{n-1}$ is a binomial coefficient.
- Hard to exploit symmetry (checking a single socle is quick).

 \Rightarrow Probably not many checkable matroids left.

Thank you!