Boij-Söderberg theory: Cones of homological invariants

Gunnar Fløystad

September 12, 2014
Graded modules and Betti numbers

\[S = k[x_1, \ldots, x_n]. \]
Always finitely generated graded modules.

\[M \text{ a graded module } \leadsto \text{ graded Betti numbers } \beta_{ij}(M). \]

\[\beta = \{\beta_{ij}(M)\} \in \mathbb{Q}^{[0,n] \times \mathbb{Z}} \]

The \(\beta \) generate a positive cone \(C^{\text{betti}}(\text{mod}, n) \) in \(\mathbb{Q}^{[0,n] \times \mathbb{Z}} \).
Subcategories

\textbf{mod} is the category of \textit{f.g. graded} S-modules.
\textbf{\mathcal{M}} is an additive subcategory of \textbf{mod}.

Get subcone $C^{betti}(\mathcal{M}, n)$ of $C^{betti}(\text{mod}, n)$.
Example subcategories

Example (Of subcategories \mathcal{M})

- CM^c, Cohen-Macaulay (CM) modules of codimension c.
- modArt_0, artinian modules generated in degree 0.
- mod_0, m, modules generated in degree 0, m-regular.
- Sq, squarefree modules. (Natural module category of \mathbb{N}^n-graded modules containing Stanley-Reisner ideals and rings.)
Example subcategories

Example (Of subcategories \mathcal{M})

- CM^c, Cohen-Macaulay (CM) modules of codimension c.
- modArt_0, artinian modules generated in degree 0.
- $\text{mod}_{0,m}$, modules generated in degree 0, m-regular.
- Sq, squarefree modules. (Natural module category of \mathbb{N}^n-graded modules containing Stanley-Reisner ideals and rings.)

If \mathcal{A} is an additive category, denote by $K\mathcal{A}$ the category of complexes of objects in \mathcal{A}.
Extremal rays

The cones are described by their extremal rays.

Theorem (Boij-Söderberg, Eisenbud-Schreyer)

The extremal rays in $C^{\text{betti}}(\text{mod}, n)$ are given by Betti diagrams of pure resolutions of CM modules

$$S(-d_0)^{\beta_0,d_0} \leftarrow \cdots \leftarrow S(-d_p)^{\beta_p,d_p},$$

$p \in [0, n]$. *All such pure resolutions exist.*
Cones of Hilbert functions

Hilbert function $h_j(M) = \dim_k M_j \rightsquigarrow H = \{h_j\} \in \mathbb{Q}^\mathbb{N}$.

$C_{\text{hilb}}(\mathcal{M}, n)$ subcone of $\mathbb{Q}^\mathbb{N}$ generated by Hilbert functions of modules M in \mathcal{M}.
Cones of Hilbert functions

Hilbert function $h_j(M) = \dim_k M_j \mapsto H = \{h_j\} \in \mathbb{Q}^N$.

$C^{\text{hilb}}(\mathcal{M}, n)$ subcone of \mathbb{Q}^N generated by Hilbert functions of modules M in \mathcal{M}.

Theorem (M. Boij-G. Smith)

The extremal rays in $C^{\text{hilb}}(\text{modArt}_0, n)$ are given by Hilbert functions of $S/\langle x_1, \cdots, x_n \rangle^i, \ i \geq 1$. The extremal rays of $C^{\text{hilb}}(\text{mod}_m, n)$ are also described.
\mathcal{F} coherent sheaf of dimension $\leq d$ on a projective space \mathbb{P}
\rightsquigarrow graded cohomology $\gamma_{ij}(\mathcal{F}) = \dim_k H^i(\mathbb{P}, \mathcal{F}(j))$
$\rightsquigarrow \gamma = \{\gamma_{ij}\} \in \mathbb{Q}[0,d] \times \mathbb{Z}$.
Cones of cohomology tables

\mathcal{F} coherent sheaf of dimension $\leq d$ on a projective space \mathbb{P}
\mapsto graded cohomology $\gamma_{ij}(\mathcal{F}) = \dim_k H^i(\mathbb{P}, \mathcal{F}(j))$
$\mapsto \gamma = \{\gamma_{ij}\} \in \mathbb{Q}[0,d] \times \mathbb{Z}$.

Such γ generate a subcone $C'(\text{coh}_{\mathbb{P}}, d)$ of $\mathbb{Q}[0,d] \times \mathbb{Z}$.
Regularity

A complex of coherent sheaves \mathcal{F}^\bullet on a projective space \mathbb{P} is m-regular if every homology sheaf $H^i(\mathcal{F}^\bullet)$ is m-regular.
Regularity

A complex of coherent sheaves \mathcal{F}^\bullet on a projective space \mathbb{P} is m-regular if every homology sheaf $H^i(\mathcal{F}^\bullet)$ is m-regular.

Consider complexes of coherent sheaves \mathcal{F}^\bullet such that:

- \mathcal{F}^\bullet is 1-regular
- The derived dual $\mathbb{R}\text{Hom}_{\mathbb{P}}(\mathcal{F}^\bullet, \omega_{\mathbb{P}})$ is $n + 1$-regular. (This implies $\dim \text{Supp} H^i(\mathcal{F}^\bullet) \leq n + 1$.)
A complex of coherent sheaves \mathcal{F}^\bullet on a projective space \mathbb{P} is m-regular if every homology sheaf $H^i(\mathcal{F}^\bullet)$ is m-regular.

Consider complexes of coherent sheaves \mathcal{F}^\bullet such that:

- \mathcal{F}^\bullet is 1-regular
- The derived dual $\mathbb{R}\text{Hom}_{\mathcal{O}_\mathbb{P}}(\mathcal{F}^\bullet, \omega_\mathbb{P})$ is $n + 1$-regular. (This implies $\dim \text{Supp} H^i(\mathcal{F}^\bullet) \leq n + 1$.)

\therefore Cohomology $\gamma = \{ \gamma_{ij} \} \in \mathbb{Q}[0,n] \times \mathbb{Z}$ and subcones

$$C^{\text{cohom}}(\text{coh}_\mathbb{P}, n) \subseteq C^{\text{cohom}}(K\text{coh}_\mathbb{P}, n) \subseteq \mathbb{Q}[0,n] \times \mathbb{Z}.$$
Homological data

F_\bullet a complex of free S-modules. It has three sets of homological invariants:

Homology:
$h_{ij} = \dim_k H_i(F_\bullet)_j \quad H = \{h_{ij}\}$

Betti:
$F_i = \bigoplus S(-j)^{\beta_{ij}} \quad B = \{\beta_{ij}\}$

Cohomology:
$c_{ij} = \dim_k H_i(\text{Hom}(F_\bullet, \omega_S))_j \quad C = \{c_{ij}\}$

Note.
$\omega_S = S(-n)$.
Cones of homological data

- Triplets \((H, B, C)\) generate a positive cone in \((\mathbb{Q}^{\mathbb{Z} \times \mathbb{Z}})^3\)

\[
C^{\text{trip}}(K\text{Freemod}, n).
\]
Cones of homological data

- Triplets \((H, B, C)\) generate a positive cone in \((\mathbb{Q}^{\mathbb{Z} \times \mathbb{Z}})^3\)
 \[C^{\text{trip}}(K\text{Freemod}, n). \]

- Also the analog for squarefree modules
 \[C^{\text{trip}}(K\text{FreeSq}, n) \subseteq (\mathbb{Q}^{\mathbb{Z} \times [0,n]})^3. \]
Cones of homological data

- Triplets (H, B, C) generate a positive cone in $(\mathbb{Q}^\mathbb{Z} \times \mathbb{Z})^3$

 \[C^{\text{trip}}(K\text{Freemod}, n). \]

- Also the analog for squarefree modules

 \[C^{\text{trip}}(K\text{FreeSq}, n) \subseteq (\mathbb{Q}^\mathbb{Z} \times [0, n])^3. \]

- If CM_c is the subcone of $K\text{Freemod}$ consisting of free resolutions of CM modules of codimension c, the projection

 \[C^{\text{trip}}(CM^c, n) \xrightarrow{\cong} C^{\text{betti}}(CM^c, n) \]

 is an isomorphism.
Describe these cones. What are the extremal rays?
The cones are described by their extremal rays.

Theorem (Boij-Söderberg, Eisenbud-Schreyer)

The extremal rays in $C^{betti}(\text{mod}, n)$ are given by Betti diagrams of pure resolutions of CM modules

$$S(-d_0)^{\beta_{0,d_0}} \leftarrow \cdots \leftarrow S(-d_p)^{\beta_{p,d_p}},$$

$p \in [0, n]$. All such pure resolutions exist.
Cones of Hilbert functions

Hilbert function \(h_j(M) = \dim_k M_j \mapsto H = \{ h_j \} \in \mathbb{Q}^N. \)

\(C^{\text{hilb}}(\mathcal{M}, n) \) subcone of \(\mathbb{Q}^N \) generated by Hilbert functions of modules \(M \) in \(\mathcal{M} \).
Cones of Hilbert functions

Hilbert function $h_j(M) = \dim_k M_j \sim H = \{h_j\} \in \mathbb{Q}^N$.

$\text{C}^{\text{hilb}}(\mathcal{M}, n)$ subcone of \mathbb{Q}^N generated by Hilbert functions of modules M in \mathcal{M}.

Theorem (M.Boij-G.Smith)

The extremal rays in $\text{C}^{\text{hilb}}(\text{modArt}_0, n)$ are given by Hilbert functions of $S/\langle x_1, \cdots, x_n \rangle^i$, $i \geq 1$.

The extremal rays of $\text{C}^{\text{hilb}}(\text{mod}_{0,m}, n)$ are also described.
Resolutions of an ideal I.

- If $I = I_X$, Betti numbers reflect geometric properties of variety X: Clifford index for curves, Greens conjecture.
- If $I = I_\Delta$, Stanley-Reisner ideal, Betti numbers reflect combinatorial/homological properties of Δ.
- Similar for modules M which are “close” to I and of S/I, modules of low rank or degree.
Nature of problem II

Cones reflect what happens in the “limit” for Betti numbers, Hilbert functions, cohomology tables, as the “size” (i.e. degree/rank) of the module goes to infinity.
Cones reflect what happens in the “limit” for Betti numbers, Hilbert functions, cohomology tables, as the “size” (i.e. degree/rank) of the module goes to infinity.

This does likely not depend anything on the geometry or combinatorics of X or Δ (other than dimension). Rather it reflects general mathematical structure, still elusive in most cases.
Cones reflect what happens in the “limit” for Betti numbers, Hilbert functions, cohomology tables, as the “size” (i.e. degree/rank) of the module goes to infinity.

This does likely not depend anything on the geometry or combinatorics of X or Δ (other than dimension). Rather it reflects general mathematical structure, still elusive in most cases.

An analog of this is stable homotopy theory in algebraic topology, where one considers spectra, “limits” of $S^p \wedge X$ as $p \to \infty$ and the “limit” stable homotopy groups.
It is conjectured that every variety X of dimension d in a projective space, has an Ulrich sheaf, i.e. a coherent sheaf with the same cohomology table as $\mathcal{O}_{\mathbb{P}^d}$, up to a scalar multiple.

If this holds, the cones $C^{\text{coh}}(\text{coh}_X, n)$ are the same for all embedded varieties X in a projective spaces.
Characterize the following cones, i.e. their extremal rays:

- $C^\text{cohom}(K\text{coh}_P, n)$
Main objectives

Characterize the following cones, i.e. their extremal rays:

- \(C^{\text{cohom}}(\text{Kcoh}_F, n) \)
- \(C^{\text{trip}}(\text{KFremod}, n) \)
Main objectives

Characterize the following cones, i.e. their extremal rays:

- $C^{\text{cohom}}(K\text{coh}_P, n)$
- $C^{\text{trip}}(K\text{Freemod}, n)$
- $C^{\text{trip}}(K\text{FreeSq}, n)$
Extremal rays

For graded modules or squarefree modules, the extremal rays for the cone of Betti diagrams, are given by Betti diagrams of pure resolutions:

\[S(-d_0)^{\beta_0,d_0} \leftarrow S(-d_1)^{\beta_1,d_1} \leftarrow \cdots \leftarrow S(-d_p)^{\beta_p,d_p} \]

where \(0 \leq p \leq n \).
Conjecture on extremal rays

Homological triplets

Conjecture (Totally pure complexes)

In $C^{\text{trip}}(K\text{FreeSq}, n)$ the extremal rays are given by triplets (H, B, C) of pure free squarefree complexes

$$F_\bullet : S(-d_0)^{\beta_0,d_0} \leftarrow S(-d_1)^{\beta_1,d_1} \leftarrow \cdots \leftarrow S(-d_p)^{\beta_p,d_p}$$

such that:

1. For every $p < q$ with $H_p(F_\bullet)$ and $H_q(F_\bullet)$ nonzero and $H_i(F_\bullet) = 0$ when $p < i < q$, then:
Conjecture on extremal rays
Homological triplets

Conjecture (Totally pure complexes)

In $C^{\text{trip}}(K\text{FreeSq}, n)$ the extremal rays are given by triplets (H, B, C) of pure free squarefree complexes

$$F_\bullet : S(-d_0)^{\beta_{0,d_0}} \leftarrow S(-d_1)^{\beta_{1,d_1}} \leftarrow \cdots \leftarrow S(-d_p)^{\beta_{p,d_p}}$$

such that:

I. For every $p < q$ with $H_p(F_\bullet)$ and $H_q(F_\bullet)$ nonzero and $H_i(F_\bullet) = 0$ when $p < i < q$, then:

$$\min\{d \mid H_{q,d} \neq 0\} - \text{Krulldim}H_p \geq q - p + 1.$$

II. Similarly for the cohomology C.

Gunnar Fløystad Boij-Söderberg theory: Cones of homological invariants
Conjecture (Totally pure complexes)

In $C^{\text{trip}}(K\text{Free} Sq, n)$ the extremal rays are given by triplets (H, B, C) of pure free squarefree complexes

$$F_\bullet : S(-d_0)^{\beta_{0,d_0}} \leftarrow S(-d_1)^{\beta_{1,d_1}} \leftarrow \cdots \leftarrow S(-d_p)^{\beta_{p,d_p}}$$

such that:

I. For every $p < q$ with $H_p(F_\bullet)$ and $H_q(F_\bullet)$ nonzero and $H_i(F_\bullet) = 0$ when $p < i < q$, then:

$$\min\{d \mid H_{q,d} \neq 0\} - \text{Krulldim} H_p \geq q - p + 1.$$

II. Similarly for the cohomology C.

(Note. This is also meaningful for $C^{\text{trip}}(K\text{Freemod}, n)$.)
Dualities

\[A : \text{ Alexander duality on Sq. } \]
\[D : \text{ standard duality on FreeSq: } D = \text{Hom}_S(-, \omega_S). \]
Dualities

\(\mathbb{A} \) : Alexander duality on \(\text{Sq} \).

\(\mathbb{D} \) : standard duality on \(\text{Free} \text{Sq} \):
\[
\mathbb{D} = \text{Hom}_S(__ , \omega_S).
\]

Then

- I. \(\Leftrightarrow \mathbb{A} \circ \mathbb{D}(F_\bullet) \) being a pure free complex.
- II: \(\Leftrightarrow (\mathbb{A} \circ \mathbb{D})^2(F_\bullet) \) being a pure free complex.
- Note that \((\mathbb{A} \circ \mathbb{D})^3 \cong \text{Id}[-n] \).
The basic problems

Problem 1. Show existence of totally pure complexes.
Problem 2. Show they are exactly the extremal rays.
Connection between cones
A surprising connection

Theorem

There is an injection of cones

\[C^{cohom}(Kcoh_P, n) \overset{\iota}{\hookrightarrow} C^{trip}(KFreeSq, n). \]

Moreover this injection comes from an algebraic association

\[\mathcal{F}^\bullet \overset{\hat{i}}{\mapsto} W(\mathcal{F}^\bullet), \text{ a free squarefree complex} \]
Connection between cones
A surprising connection

Theorem

There is an injection of cones

\[C^{\text{coh}}(K\text{coh}_P, n) \xleftarrow{\iota} C^{\text{trip}}(K\text{FreeSq}, n). \]

Moreover this injection comes from an algebraic association

\[F^\bullet \xrightarrow{\hat{i}} W(F^\bullet), \text{ a free squarefree complex} \]

Conjecture

The map \(\iota \) is an isomorphism of cones.
Problem 1 on the existence of totally pure complexes can then be transferred to a problem on the existence of certain complexes of coherent sheaves.
Existence I

Theorem

For each numerical triple \((H, B, C)\) where \(H_p\) is nonzero only for one \(p\), and \(C_p\) is nonzero for only one \(p\), this totally pure free squarefree complex exists.

It is in fact nothing but a pure free resolution of a CM squarefree module.
For each numerical triple \((H, B, C)\) where \(H_p\) is nonzero only for one \(p\), and \(C_p\) is nonzero for only one \(p\), this totally pure free squarefree complex exists.

It is in fact nothing but a pure free resolution of a CM squarefree module.

In characteristic zero they are the image by \(\hat{\iota}\) of natural \(GL(W)\)-equivariant vector bundles on projective space \(\mathbb{P}(W)\).
Restriction to vector bundles

Theorem (Essentially Eisenbud-Schreyer)

The restriction

\[C^{\text{cohom}}(\text{vect}_{\mathbb{P}^c}, n) \twoheadrightarrow C^{\text{trip}}(CMSq^c, n) \]
Theorem (Essentially Eisenbud-Schreyer)

The restriction

\[C^{\text{coh}}(\text{vect}_{\mathbb{P}^c}, n) \cong C^{\text{betti}}(CMSq^c, n) \]

is an isomorphism of cones.
Existence goal

Show that for all possible *numerical* triplets \((H, B, C)\) there does exist a free squarefree complex with these homological invariants.

Show that such complexes are in the image of \(\hat{\iota}\).
Existence II

Theorem (F.-S.Sam)

For all numerically possible \((H, B, C)\) with one nonzero homology module \(H_p\), and with two nonzero cohomology modules \(C_q\), there does exist a totally pure free squarefree complex.

The coherent sheaves which by \(\hat{i}\) map to these complexes arise as equivariant coherent sheaves for a maximal parabolic subgroup \(P \subseteq GL(W)\).
Conclusion

Characterize the following cones, i.e. their extremal rays:

1. $C^{\text{cohom}}(K\text{coh}_{\mathbb{P}}, n)$
2. $C^{\text{trip}}(K\text{Freemod}, n)$
3. $C^{\text{trip}}(K\text{FreeSq}, n)$

- The cones 1. and 3. are likely isomorphic.
Conclusion

Characterize the following cones, i.e. their extremal rays:

1. $C^{\text{coh}}(K\text{coh}_\mathbb{P}, n)$
2. $C^{\text{trip}}(K\text{Freemod}, n)$
3. $C^{\text{trip}}(K\text{FreeSq}, n)$

- The cones 1. and 3. are likely isomorphic.
- Basic steps have been taken to understand their extremal rays. Natural construction likely by coherent sheaves equivariant for parabolic subgroups of $GL(W)$. (Point: The general framework connects to representation theory.)
Conclusion

Characterize the following cones, i.e. their extremal rays:

1. $C^{\text{cohom}}(\text{Kcoh}_P, n)$
2. $C^{\text{trip}}(\text{KFreemod}, n)$
3. $C^{\text{trip}}(\text{KFreeSq}, n)$

- The cones 1. and 3. are likely isomorphic.
- Basic steps have been taken to understand their extremal rays. Natural construction likely by coherent sheaves equivariant for parabolic subgroups of $GL(W)$. (Point: The general framework connects to representation theory.)
- Even if all totally pure complexes exists it is still only conjectural that they are all the extremal rays.
Conclusion

Characterize the following cones, i.e. their extremal rays:

1. $C^{\text{cohom}}(K\text{coh}_\mathbb{P}, n)$
2. $C^{\text{trip}}(K\text{Freemod}, n)$
3. $C^{\text{trip}}(K\text{FreeSq}, n)$

- The cones 1. and 3. are likely isomorphic.
- Basic steps have been taken to understand their extremal rays. Natural construction likely by coherent sheaves equivariant for parabolic subgroups of $GL(W)$. (Point: The general framework connects to representation theory.)
- Even if all totally pure complexes exists it is still only conjectural that they are all the extremal rays.
- Cone 2. is still uncharted, but various projections of subcones have been understood.